Exit times for an increasing Lévy tree-valued process

نویسنده

  • ROMAIN ABRAHAM
چکیده

We give an explicit construction of the increasing tree-valued process introduced by Abraham and Delmas using a random point process of trees and a grafting procedure. This random point process will be used in companion papers to study record processes on Lévy trees. We use the Poissonian structure of the jumps of the increasing tree-valued process to describe its behavior at the first time the tree grows higher than a given height. We also give the joint distribution of this exit time and the ascension time which corresponds to the first infinite jump of the tree-valued process.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On exit times of Lévy-driven Ornstein–Uhlenbeck processes

We prove two martingale identities which involve exit times of Lévy-driven Ornstein–Uhlenbeck processes. Using these identities we find an explicit formula for the Laplace transform of the exit time under the assumption that positive jumps of the Lévy process are exponentially distributed.

متن کامل

TREE AUTOMATA BASED ON COMPLETE RESIDUATED LATTICE-VALUED LOGIC: REDUCTION ALGORITHM AND DECISION PROBLEMS

In this paper, at first we define the concepts of response function and accessible states of a complete residuated lattice-valued (for simplicity we write $mathcal{L}$-valued) tree automaton with a threshold $c.$ Then, related to these concepts, we prove some lemmas and theorems that are applied in considering some decision problems such as finiteness-value and emptiness-value of recognizable t...

متن کامل

Asymptotic first exit times of the Chafee-Infante equation with small heavy-tailed Lévy noise

We study the first exit times form a reduced domain of attraction of a stable fixed of the Chafee-Infante equation when perturbed by a heavy tailed Lévy noise with small intensity.

متن کامل

Alternating Regular Tree Grammars in the Framework of Lattice-Valued Logic

In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued)  regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...

متن کامل

First exit times of solutions of non-linear stochastic differential equations driven by symmetric Lévy processes with α-stable components

We study the exit problem of solutions of the stochastic differential equation dX t = −U ′(Xε t ) dt+ε dLt from bounded or unbounded intervals which contain the unique asymptotically stable critical point of the deterministic dynamical system Ẏt = −U (Yt). The process L is composed of a standard Brownian motion and a symmetric α-stable Lévy process. Using probabilistic estimates we show that in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012